Inferring Hidden Causal Structure
نویسندگان
چکیده
We used a new method to assess how people can infer unobserved causal structure from patterns of observed events. Participants were taught to draw causal graphs, and then shown a pattern of associations and interventions on a novel causal system. Given minimal training and no feedback, participants in Experiment 1 used causal graph notation to spontaneously draw structures containing one observed cause, one unobserved common cause, and two unobserved independent causes, depending on the pattern of associations and interventions they saw. We replicated these findings with less-informative training (Experiments 2 and 3) and a new apparatus (Experiment 3) to show that the pattern of data leads to hidden causal inferences across a range of prior constraints on causal knowledge.
منابع مشابه
Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks
Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their G...
متن کاملInferring Hidden Causes
One of the important aspects of human causal reasoning is that from the time we are young children we reason about unobserved causes. How can we learn about unobserved causes from information about observed events? Causal Bayes nets provide a formal account of how causal structure is learned from a combination of associations and interventions. This formalism makes specific predictions about th...
متن کاملReinforcement learning and causal models
This chapter reviews the diverse roles that causal knowledge plays in reinforcement learning. The first half of the chapter contrasts a “model-free” system that learns to repeat actions that lead to reward with a “model-based” system that learns a probabilistic causal model of the environment which it then uses to plan action sequences. Evidence suggests that these two systems coexist in the br...
متن کاملInferring causal structure and hidden causes from event sequences
Past research has shown that people use temporal information to detect and discriminate between different causal relationships and that timing-based causal inferences are modulated by explicit information and domain-appropriate expectations. Many of these past results suggest that learners make inferences about hidden causes from timing information, but there have been no systematic studies of ...
متن کاملA Non-Parametric Bayesian Method for Inferring Hidden Causes
We present a non-parametric Bayesian approach to structure learning with hidden causes. Previous Bayesian treatments of this problem define a prior over the number of hidden causes and use algorithms such as reversible jump Markov chain Monte Carlo to move between solutions. In contrast, we assume that the number of hidden causes is unbounded, but only a finite number influence observable varia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cognitive science
دوره 34 1 شماره
صفحات -
تاریخ انتشار 2010